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What data are available to predict such event ?
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Formalism: the feature space

Let (Ω,A,P) be a probability space. We introduce the following variables
Event codes. The set of error codes Σ = {ei , 1 ≤ i ≤ d} that can be

emitted;

Feature space. The feature space of event as the set of random covariates
Xt : Ω −→ Σ× RK with K internal and external real valued time
series;

Code Libellé
8025 PD : Def. clos
8425 PG : Def. clos

16111 Def. camera 2
20052 LT Autorisation RD
20053 LT Autorisation em RD

Time Code X 1 . . . XK

t1 e1 x1
t1 . . . xKt1

t2 e4 x1
t2 . . . xKt2

t3 e1 x1
t3 . . . xKt3

t4 e3 x1
t4 . . . xKt4

t5 e1 x1
t5 . . . xKt5
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Formalism: the target space

Degradation process. A real valued r.v. Zt : Ω −→ R representing the
degradation process at eatch time t ∈ R+ and zf threshold
indicating if the system is considered malfunctioning.

Target. The binary health status Yt = 1Zt≤zf at each time t ∈ R.
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Formalism

This framework spans a very large class of problem that are very evolving
system with feature variable valued in an unordered set such as
I Graph;
I Sentences;
I DNA sequences.
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Challenges

I Construct a relevant feature space with all the available data is a hard
task;

I The is no straightforward way to process a symbolic time serie data
into a stat model pipeline:

I The output of the prediction pipeline must be interpretable by the
experts;

I The overall computational pipeline must run with reasonable
computational requirements.
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How to process symbolic data ?

There is three common way to treat symbolic data:
Kernel embeddings. (Muandet et al., 2017) Kernel methods rely on a

positive definite kernel function k : X ×X → R that induce a
mapping φ : X → H in a hilbert pace H.

State machine model (Kamlu and Laxmi, 2019) . Modelizes directly the
degradation process through the computation of transition
matrix between hidden states against observed random states
(see appendix of the thesis manuscript for more details).

Windowing approach. Aggregates signal over parametrized time windows.
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How to process symbolic data ?

At the end, we obtain a classical ML dataset with numerical quantities
Window C1 . . . Cd . . . TTA (days)
T1 2 . . . 10 . . . 10
T2 0 . . . 2 . . . 5
T3 1 . . . 0 . . . 3
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Results: traditional ML approaches for the french train fleet

X Gradient Boosting Random Forest Light Gradient-Boosting Machine Categorical Boosting Linear Regression k-Nearest Neighbors
[1] [1,7] [1,7,14] [1] [1,7] [1,7,14] [1] [1,7] [1,7,14] [1] [1,7] [1,7,14] [1] [1,7] [1,7,14] [1] [1,7] [1,7,14]

TGV Doors
AUC 0.728 0.73 0.758 0.72 0.725 0.749 0.733 0.73 0.756 0.634 0.632 0.659 0.699 0.707 0.725 0.582 0.578 0.562

Accuracy 0.659 0.668 0.692 0.659 0.674 0.683 0.671 0.669 0.692 0.597 0.594 0.608 0.645 0.653 0.667 0.567 0.556 0.55
Recall 0.591 0.59 0.609 0.608 0.616 0.625 0.575 0.564 0.597 0.611 0.645 0.628 0.547 0.531 0.561 0.542 0.552 0.541
F1 0.634 0.64 0.664 0.641 0.654 0.663 0.636 0.63 0.659 0.602 0.613 0.616 0.606 0.605 0.627 0.556 0.554 0.546

Table: Test Accuracy, Recall and AUC 5× cross-validated on datasets reported in
the thesis manuscript.
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Interpretability

What about interpretability ?

We want an output in term of patterns of codes of the form

(e1, e5)→ Failure.

This is the domain of Pattern Mining (Agrawal, Imielinski, and Swami,
1993).
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Results: mining to interpret

Pattern with high predictive power

Pattern with low predictive power

Figure: Support on each class of patterns extracted by algorithm a priori (Agrawal
and Srikant, 1994) for µ = 1% and µ = 4% and patterns of different sizes for the
Doors dataset.Each black point is a pattern of codes with size representing the
length of the pattern. Patterns that are in the upper half of the figure are the
patterns that appears mostly near breakdowns events and pattern that are in the
bottom half of the bisector (red dotted line) are the one appear in period without
breakdowns.
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Motivations

Pattern mining of events is crucial towards interpretable anomaly detection.

How do we extract them ?
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Background on pattern mining

I Let E = (e1, . . . , ed) be any set and consider X = P(E ) the collection
of all 2d possible patterns on E .

I Consider a r.v. X : Ω→ X distributed according to P and a dataset
(X1, . . . ,Xn) ∼ X .

I Let’s compute the support

(111)

(110) (101) (011)

(100) (010) (001)

(000)

A100
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Background on pattern mining

I Let E = (e1, . . . , ed) be any set and consider X = P(E ) the collection
of all 2d possible patterns on E .

I Consider a r.v. X : Ω→ X distributed according to P and a dataset
(X1, . . . ,Xn) ∼ X .

I Let At = {z ∈ X : z ⊇ t} the set of all itemsets greater than t ∈ X ,
ft(.) = 1.∈At and the associated func family F = {ft : t ∈ X}. The
support of any pattern t is given by s(t) = E[1X∈At ] = Pft .

(111)

(110) (101) (011)

(100) (010) (001)

(000)

A100

Example

s(e1) = E [A100]

= Pf100
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Motivations

The problem can now be stated as follow

Problem statement
Let E = (e1, . . . , ed) be any set and X = P(E ) be the set of patterns on
E . Consider data generated by a r.v. X : Ω→ X distributed according to
P . For any x ∈ X , compute

r =
P(x |Y = 0)

P(x |Y = 1)
. (1)

To compute it, we can
I Discriminative pattern mining using a generative model for each

subclass (Dib et al., 2021)
I Take a subsample of the dataset and bound the expect support with

classical machine learning tools (Cousins* and Dib*, 2021).
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Motivations

Recall that the support of a pattern is given by Pft and the empirical
support is denoted Pnft . The problem can be reformulated as bounding the
supremum deviation of an empirical process.

Problématique
Let X be a set and F = {ft : t ∈ X} a functional class indexed on X and
an ε ∈ [0, 1]. With probability 1− δ, we require that

SnF = sup
t∈X

∣∣∣P̂nft − Pft

∣∣∣ ≤ ε. (2)

Several contributions have been made recently to the topic of probabilistic
bound for pattern mining using various methods of the toolbox of
statistical learning theory such as using Massart’s lemma (Riondato and
Upfal, 2015a), VC dimension (Riondato and Upfal, 2015b) or Monte Carlo
(Global) Rademacher averages (Pellegrina et al., 2020).
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Background on rademacher complexity based bounds: the
global rademacher complexity

Left F be any real-valued functional space, (X1, . . . ,Xn) an sample of size
n drawn from the underlying and unknown distribution P and (σ1, . . . , σn)
a set of rademacher variables.

Rn(F , x) = E
x

[
E
σ

[
sup
f ∈F

∣∣∣∣∣1n
n∑

i=1

σi f (xi )

∣∣∣∣∣
]]

(Empirical Rad. average)

Rn(F) = E
x

[
E
σ

[
sup
f ∈F

∣∣∣∣∣1n
n∑

i=1

σi f (xi )

∣∣∣∣∣
]]

(Rademacher average)

Amir Dib†, (ENS Paris-Saclay) Bayesian feature discovery for predictive maintenance October 2021 16 / 56



Background on rademacher complexity based bounds: the
global rademacher complexity

Left F be any real-valued functional space, (X1, . . . ,Xn) an sample of size
n drawn from the underlying and unknown distribution P and (σ1, . . . , σn)
a set of rademacher variables. Let Fr = {f ∈ F ;T (f ) ≤ r}

Rn(Fr , x) = E
x

[
E
σ

[
sup
f ∈Fr

∣∣∣∣∣1n
n∑

i=1

σi f (xi )

∣∣∣∣∣
]]

(Local Empirical Rad Av.)

Rn(Fr ) = E
x

[
E
σ

[
sup
f ∈Fr

∣∣∣∣∣1n
n∑

i=1

σi f (xi )

∣∣∣∣∣
]]

(Local Rademacher Av.)

Amir Dib†, (ENS Paris-Saclay) Bayesian feature discovery for predictive maintenance October 2021 17 / 56



Background

Using Talgrand’s inequality it can be shown the following distribution free
uniform bound

Theorem
Let F be a functional family, (x1, . . . , xn) a i.i.d. sample of size n drawn
from P . With probability 1− δ

(
P − P̂n

)
f ≤ 8Rn(F) + Σ(F)

√
8 log 2

δ

n
+

3 log 2
δ

n
, (3)

where Σ2(F) := supf ∈F E
[
f 2] is a bound on the variance of the functions

in F .

Can we drop the uniform bound for a variance dependend one, allowing for
use of localized complexities measures of F to obtain fast rates ?
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Background on rademacher complexity based bounds: the
local rademacher complexity

(Bartlett, Bousquet, and Mendelson, 2005) the following non uniform
bound based on LRA

Theorem
Assume that ψ is a sub-root function, i.e., ψ(r ; δ)/

√
r is non-increasing

with respect to r ∈ R+. Assume the Bernstein condition that
T (f ) ≤ BePf for all f ∈ F . Then with probability at least 1− δ, for all
f ∈ F and K > 1,

(P − Pn) f ≤ 1
K
Pf +

100(K − 1)r∗

Be

where r∗ is the "fixed point" solution of the equation r = Beψ(r ; δ).
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Main result: a localized bound for the pattern mining
problem

In the context of pattern mining, we can establish that (Cousins* and Dib*,
2021)

Proposition (Monte-Carlo Localization Bounds)

Consider the fixed point rU(K ) function of the empricial rademacher
average. With probability at least 1− δ and for a function f ∈ F we have

Pf ≥ sup
K>0

min

{
K

K + 1
P̂nf , P̂nf −

rU(K )

K

}
,

Pf ≤ inf
K>1

max

{
K

K − 1
P̂nf , P̂nf +

rU(K )

K

}
.
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Experiment
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Figure: Experimental comparison of upper and lower bounds (y-axis) given
empirical frequencies (x-axis), of our method to existing work on real-world
datasets.
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Conclusion

I First use of localization in the context of pattern mining;

I We showed that using localized complexity allows to bound small
variance itemset more tightly than previous methods;

I We designed a geometrical approach allowing to compute the fixed
point the localized rademacher average in the context of pattern
mining;

I The approach is tested empiracally and shows better convergence
behavior for small patterns than state of the art methods.
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Descriminative pattern mining problem as a stochastic
optimization problem

Recall that for a set X be the set of patterns on E and a r.v. X : Ω→ X
distributed according to P , our goal is to compute for following quantity for
any pattern x ∈ X

r =
P(x |Y = 0)

P(x |Y = 1)
.

It can be shown (Dib et al., 2021) that this problem can be reformulated as
an optimization when you minimize an objective function of the type

L(λ) = E
[
F (Xλ)

]
, (4)

with λ ∈ RK and possibily very large K .

How can we speed up such inference ?
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Stochastic optimization procedure

Given a sample (X1, . . . ,XN) of size N, typical MCVI consists of a gradient
descent at each step k

λk+1 = λk − αk
1
N

N∑
i=1

∇λF
(
Xλk
i

)
︸ ︷︷ ︸

ĝN
MC

.

Gradient descent descent convergence speed crucially depends on the
following (Bottou, Curtis, and Nocedal, 2018) quantity

E|g |2`2 = trVg + |Eg |2`2 .
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Stochastic optimization procedure

Is there ways to reduce the gradient variance ?

I Modify the gradient formula to reduce the variance (Miller et al.,
2017; Roeder, Wu, and Duvenaud, 2017);

I Control variate (Geffner and Domke, 2018);
I Alternative sampling (Pagès, 2015; Buchholz, Wenzel, and Mandt,

2018; Tran, Nott, and Kohn, 2017; Ruiz, Titsias, and Blei, 2016).

What if we want variance-free gradient ?
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The optimal quantizer

I Let X : (Ω,F) −→ (Rd ,B(Rd)) be a r.v. with finite p moments

I Goal: we want to find the best r.v. X̂ with finite support Γ ⊂ Rd to
replace X . Let q : Rd → Γ be the function s.t. q(X ) = X̂ .

I Example: take the following samples. |Γ| = 1 ?
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The optimal quantizer

What is the best q function to minize the pointwise distance ?

I Consider the voronoi cells associated with Γ = (x1, . . . , xN) such that

V (xi , Γ) =
{
z ∈ Rd : |z − xi | = min

x∈Γ
|z − x |

}
.

I Additionaly, take the closest projection onto the Voronoi cells defined
by

X̂Γ = ΠΓ X (5)

=
N∑
i=1

xi1X∈V (Γ,xi ). (6)

I Then we have that

|X − X̂Γ| = min
x∈Γ
|X − x |.
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The optimal quantizer: illustration
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The optimal quantizer: illustration

X(�)
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The distortion function

Definition (Optimal Quantizer)
Let X : ((Ω,F)) −→ (E ,B(E )) be a random variable in Lp (Ω,A,P) with
distribution µ and consider a finite subset Γ ⊂ E of size n. The
Lp (Ω,A,P) distortion function Dp,µ of µ at level n is defined by

Dp,µ : En −→ R+

Γ 7−→ E
[
minxi∈Γ‖X − xi‖p

] , (7)

and the quantization error function by

ep,µ = D
1
p
p,µ. (8)

The minimizer of en,µ(Γ) is called a Lp (Ω,A,P) optimal quantizer of µ at
level n.
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The optimal quantizer: normal standard distribution

Monte Carlo Randomized Quasi Monte Carlo Optimal Quantization

Figure: Monte Carlo (left), Randomized Monte Carlo (center) and Optimal
Quantization with the associated Voronoi Cells (right), for a sampling size
N = 200 of the bivariate normal distribution N (0, I2)
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The optimal quantizer: the cubature formula

The key property of the optimal quantizer lays in the simplicity of his
cubature formula (Pagès, 2018).

Proposition

Let X̂N be a quantizer over ΓN = (x1, . . . , xN) the optimal quantizer.For
every measurable function F (X ) ∈ L2

Rd (Ω,A,P)

E
[
F
(
X̂N
)]

=
N∑
i=1

ωiF
(
xNi
)
, (9)

with ωi = P
(
X̂Γ = xi

)

This formula allows the use of E
[
F (X̂N)

]
in place of E

[
F (Xλ)

]
.
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Quantized optimization procedure

The quantized optimization procedure considers the optimal quantization
instead of the traditional MC. Precisely, Taking the optimal quantizer at
level N, X ΓN ,λ, results in the following gradient descent scheme

λk+1 = λk − αk∇λ
N∑
i=1

ωk
i F
(
X ΓN ,λk
i

)
, (10)

with ωk
i = P

(
X Γk

N ,λk = xki

)
.
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Quantized variational inference: the bayesian model

Given data y , a model p(y , z) with latent variable z , we want to
approximate the posterior distribution p(z |y).
Take a a variational distribution qλ that approximates p(.|y), the following
decomposition can be obtained (Saul, Jaakkola, and Jordan, 1996)

log p(y) = E
z∼qλ

[
log

p(z , y)

qλ(z)

]
︸ ︷︷ ︸

ELBO L(λ)

+ KL
(
qλ(z)‖p(z |y)

)︸ ︷︷ ︸
KL-divergence

. (11)

Using the reparametrization trick (Kingma, Salimans, and Welling, 2015)
with noise parameter X ∼ q and denoting Xλ = hλ(X ), the inference
problem can be rewritten as finding λ∗ such as

λ∗ ∈ argmaxEq

[
f (Xλ)

]
. (12)
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Some theoretical guarantee: the Elbo quantization error

For ELBO maximization problem it can be shown that bias on the objective
function is controlled by the quantization error (Dib, 2020)

Proposition

Let λ∗ = min
λ∈RK

L(λ) and λ∗q = min
λ∈RK

L̂NOQ(λ), then

L(λ∗)− L̂NOQ(λ∗q) ≤ C
[
2‖Xλ∗ − X Γ,λ∗‖2 + ‖Xλ∗q − X Γ,λ∗q‖2

]
.
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Results: Poisson general model
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Figure: ELBO (first row, log scale) and expect gradient norm (second row, log
scale) during the optimization procedure for various models: Poisson Generalized
Linear Model (left), Bayesian Linear Regression (center) and Bayesian Neural
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Conclusion

Advantages
I Variance free Gradient estimator allowing for swift slides ;
I Optimal Quantization is preserved through linear transformation

(scaling and shifting) for large class of qλ. Hence, to optimization need
not to recompute the OQ at each steps!

I Implementation is (rather) simple with reparametrize gradient in the
use case of variational inference.

Limitations
I Doesn’t apply to any type of prob model;
I Reducing bias is challenging (can lead to computationnal instability).

Amir Dib†, (ENS Paris-Saclay) Bayesian feature discovery for predictive maintenance October 2021 36 / 56



Conclusion

Advantages
I Variance free Gradient estimator allowing for swift slides ;
I Optimal Quantization is preserved through linear transformation

(scaling and shifting) for large class of qλ. Hence, to optimization need
not to recompute the OQ at each steps!

I Implementation is (rather) simple with reparametrize gradient in the
use case of variational inference.

Limitations
I Doesn’t apply to any type of prob model;
I Reducing bias is challenging (can lead to computationnal instability).

Amir Dib†, (ENS Paris-Saclay) Bayesian feature discovery for predictive maintenance October 2021 36 / 56



A computational pipeline for the railway french fleet

Summarize of the work
I Construction of an industrial machine learning pipeline on the

real-world usecase of predictive maintenance for the french train fleet;
I Designed a two-sample based pipeline pruning to reduce drasticaly the

computational requirements needed to optimize on the set of
hyperparameters of the pipeline;

I Introduced a model that allow both taking into account expert
knowledge and output easily interpretable results based on patterns.
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Bayesian method for discriminative pattern mining

Part of this work has been published in 29th IEEE European Signal
Processing Conference (EUSIPCO) (Dib et al., 2021).
Summarize of the contribution
I New parametric approach for the discriminative pattern mining problem

that allow for expert knowledge through priors;
I Design of new algorithm to enrich any classifier with discriminative

patterns and showed score improvement over traditional methods on
real-world use cases.

Future work and perspectives
I Improve the model by using a non parametric approach for the bernoulli

mixture model using bread stick approach to replace the choice of K;
I Find new discriminative score that can be better suited.

Reproductibility. The results and figures are be fully reproductible and
accessible on public repository.
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Localized pattern mining

This work corresponds to the preprint (Cousins* and Dib*, 2021)1

to be submitted.
Summarize of the contribution
I First use of localized complexity for the pattern mining problem;
I Designed a double optimization scheme to compute the bound based on

empirical quantities;
Future work and perspectives
I Requires to use the set of closed itemsets above a certain treshold;
I Apply to more challeging problem such as DNA sequence classification or

graph mining.

Reproductibility. The results and figures are be fully reproductible and
accessible on public repository.

1equal contributions.
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Optimal Quantization

Part of this work has been published in Advances in Neural
Information Processing Systems 33 Proceedings (NeurIPS 2020)
(Dib, 2020).
Summarize of the contribution
I A new sampling method for the general stochastic optimization problem

that allow for variance free optimization;
I Proposed a new algorithm for the VI problem and showed that it can be

used at comparable computational cost than MC based methods;
I Showed on real-world and challenging experiments that qvi outperforms

most advanced approaches towards variance reduction;
Future work and perspectives
I Design new ways to reduce the bias;
I Apply to other frameworks such as RL (Mohamed et al., 2020);
I Use the semi-discrete optimal transport approach to contruct the optimal

quantizer trough the Sliced Wasserstein distance;

Reproductibility. The results and figures are be fully reproductible and
accessible on public repository.
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Publications and preprint

Long life to the train !

I Amir Dib. “Quantized Variational Inference”. In: Advances in Neural
Information Processing Systems 33 (2020)

I Amir Dib et al. “Bayesian Feature Discovery for Predictive
Maintenance”. In: 2021 29th European Signal Processing Conference
(EUSIPCO). IEEE, Mar. 2021

I Cyrus Cousins* and Amir Dib*. “Fast Convergence Rates for
Low-Frequency Pattern Mining with Localization”. In: To Be
Submitted. 2021

I Marie Garin et al. “Epidemic Models for COVID-19 during the First
Wave from February to May 2020: A Methodological Review”. In:
arXiv:2109.01450 [q-bio, stat] (Sept. 2021)

Personal page: https://www.amirdib.com/
Github: https://github.com/amirdib
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From reactive to predictive maintenance

What are the strategies towards data-based maintenance ?
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From reactive to predictive maintenance

Reactive Maintenance
Maintenance is performed when
equipment has failed.

Preventive Maintenance
Maintenance is performed regularly
on equipment to reduce probability of
failure

Predictive Maintenance
Maintenance is performed before
equipment failure using predictive
insights.

Degradation
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The stochastic optimisation framework

Let (Ω,A,P) be the probability space, Xλ : (Ω,A,P)→
(
E , | · |E

)
a

random variable parameterized by λ ∈ RK .
For Xλ ∈ L2

Rd (Ω,A,P), we investigate the general Stochastic Optimization
problem Find λ∗ such that

f (λ) = E
[
F (X ,λ)

]
=

∫
E
F (x ,λ)µ(dx),

is minimized.
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The stochastic optimisation framework

steps; simulation (yellow) and optimization (green). The first step produces
The simulation phase produces a simulation of the stochastic system or
interaction withthe environment, as well as unbiased estimators of the
gradient (adapted from Mohamed et al., 2020).

System output

�k

Input parameter

Stochastic gradient

�k+1

�∇ F(�,�)

F(�,�)
SYSTEM OR ENVIRONMENT

OPTIMISATION STEP

Figure: A typical stochastic optimization process composed of two
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Quantized variational inference: Bayes model definition

I Take data y and latent variables z ,

I Choose a model p(y , z) represents our view of the studied
phenomenon through the choice of p(y |z) and p(z).

The goal of the Bayesian statistician is to find the best latent variable that
fits the data, hence the likelihood p(z |y). These quantities are linked by
the bayes formula which gives that

p(z |y) =
p(z)p(y |z)

p(y)
, (13)

where p(y) is the marginal distribution or normalizing factor, which is a
constant.
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Background: the voronoi diagram

Figure: Voronoi diagram for a finite subset Γ ⊂ R2 with size n = 5 for the `1
(
R2
)

norm (Manhattan distance, left), `2
(
R2
)
norm (Euclidean distance, center) and

`∞
(
R2
)
norm (Chebyshev distance, right). Each point x of R2 is colored by it’s

associated Voronoi cell. Notably, the Voronoi cells are star-shaped for all
considered distances (see Proposition ??), are convex polytopes in the euclidian
case and the separating sets are hyperplanes of R2.
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The optimal transport approach

Definition
Let (E , ‖.‖) be a vector space equiped with the norm ‖.‖, µ ∈M (E ) a
probability measure with p-th finite moment and n ∈ N the quantization
level. DenotingM (n) the space of probability measure with support at
most n, the optimal quantizer ν̂n of µ is defined by

ν̂n = argmin
ν∈M(K)

Wp(µ, ν). (14)
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Main result: a localized bound for the pattern mining
problem

Definition
Let F be the functional family and F̂r the empirical star localized class
(??). For Rademacher trial count m, sample size n, and any δ ∈ [0, 1],
define the following

ψ̂n,m(r)
.

= 2R̂n

(
F̂r , x ,σ

)
+ 2r̂ φ̆

(
2 ln 4

δ

nmr̂

)
+ r φ̂

(
2 ln 4

δ

nr

)
, (15)

with r̂
.

= 3r + 5r φ̂
(

ln 4
δ

5nr

)
and consider the fixed point r̂∗n such that

r̂∗n = ψ̂n,m (r̂∗n ). For all K > 0, we set rU(K ) to be the fixed point w.r.t. r
of the following equation

√
r r̂∗n +

[
2
√

r r̂∗n + r
]
φ̆

(
1
n ln 4

δ

2
√
r r̂∗n + r

)
=

r

K
. (16)
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Local rademacher complexity: an intuitive example

I X ∼ N (0, 1)

I Y ∼ sign(α + X + ε)

I `(x , y) = |y − x |
I F = {sign(x + a); a ∈ R}

Image
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The discriminative mining problem

I Let E = (e1, . . . , ed) the base dictionary of events and E = P(E ) the
collection of all 2d possible patterns on E .

I A database of pattern from a random process valued in E is composed
of ordered set of event from E and an associated label, such that
D = {(xi , li )ni=1} of elements of E × {0, 1}

Sequence Label Events
T1 1 {e1, e2}
T2 0 {e1, e2, e4}
T3 1 {e1, e2, e3, e4}
T4 0 {e1, e3}
T5 0 {e2, e3, e4}

I Question: For any pattern in x ∈ P(E ), what is the

statistical difference of frequency in each class ?
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The discriminative pattern mining problem

e1

e2

e3

e4

e5

e6

e7

e8

e9

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20

D0 D1

x

z

Figure: An example data set of events D = D0 ∪D1. Row corresponds to items in
E = (e1, . . . , e9) and columns to n = 20 samples. A blue colored area indicates
that the item is present in the sample column considered. In this data set, the
pattern x = {e7, e8} in E seems to be nondiscriminative since s0(x) = s1(x). On
the contrary, the pattern z = {e3, e4, e5} appears to be specific to the positive
class l = 1.
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The model

Let X = (x1, . . . , xn) be an i.i.d.sample and suppose the underlying model
is a bmm with K components. For k ∈ {1, . . . ,K}, the k-ith sampling
distribution pk(xi |θk) depends has parameter θk = (θkj)

d
j=1. Denoting λk

the probability of sampling from the k-th component with
∑K

k=1 λk = 1,
the global sampling distribution writes

p(xi |Θ,λ) =
K∑

h=1

λkpk(xi |θk),

where Θ = (θk)Kk=1 and λ = (λk)Kk=1).
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The model

Knowing the mixture component parameter λ, the component indicator
wi = (wi1, . . . ,wiK ) for the sample i is thus distributed as Multin(λ).
Finally, the joint distribution is derived as

p(X,W|Θ,λ) = p(W|λ)p(X|W,Θ)

=
K∑

k=1

λk

n∏
i=1

pk(xi |θk)wik .

λ|α ∼ Dirichlet (α) ,

wi |λ ∼ Multin(λ),

θkj |β,γ ∼ Beta(β,γ),

xij |θkj ∼ Bernoulli(θkj).
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The BFP algorithm

BFP algorithm consists mainly of three steps:
I Given D = D0 ∪ D1, fit the bernoulli mixture model on each subset to

find the set of optimal parameter Γi = (Θi ,λi ,K ) associated with
label i .

I For a pattern x ∈ E compute the ratio

r(x) =
p(M1 | x)

p(M0 | x)

=
p(M1)

p(M0)
× p(x | Γ1)

p(x | Γ0)
.

I The best discriminative pattern are then appended as a variable in the
feature space on which any classifier can be trained.
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Experiments

Table: Test Accuracy, Recall and AUC 10× cross-validated for bpfd, pf and bc
classifiers (with grid-search hyperparameter tuning) for benchmark datasets.

X Gradient Boosting Random Forest Light Gradient-Boosting Machine Categorical Boosting Linear Regression k-Nearest Neighbors
BC PF bpfd BC PF bpfd BC PF bpfd BC PF bpfd BC PF bpfd BC PF bpfd

ijcnn1
AUC 0.728 0.769 0.927 0.726 0.767 0.913 0.732 0.769 0.926 0.727 0.768 0.927 0.714 0.732 0.899 0.614 0.643 0.841

Accuracy 0.906 0.907 0.929 0.906 0.907 0.928 0.906 0.907 0.929 0.906 0.907 0.93 0.905 0.905 0.918 0.89 0.897 0.922
Recall 0.0398 0.0465 0.403 0.0411 0.0479 0.416 0.0238 0.0372 0.401 0.0413 0.0474 0.407 0 0.0002 0.245 0.106 0.105 0.419
F1 0.0742 0.0862 0.519 0.0762 0.0885 0.523 0.0455 0.0702 0.516 0.0765 0.0877 0.523 0 0.0003 0.362 0.154 0.16 0.505

cod-rna
AUC 0.776 0.496 0.815 0.776 0.496 0.815 0.776 0.496 0.815 0.776 0.496 0.815 0.765 0.495 0.813 0.706 0.5 0.764

Accuracy 0.718 0.667 0.775 0.718 0.667 0.775 0.717 0.667 0.775 0.718 0.667 0.775 0.713 0.667 0.774 0.688 0.591 0.739
Recall 0.588 0 0.383 0.585 0 0.386 0.592 0 0.384 0.588 0 0.384 0.512 0 0.364 0.483 0.231 0.516
F1 0.581 0 0.532 0.58 0 0.534 0.583 0 0.532 0.581 0 0.532 0.544 0 0.518 0.503 0.263 0.568

a9a
AUC 0.89 0.896 0.88 0.863 0.869 0.875 0.894 0.9 0.903 0.894 0.9 0.904 0.893 0.902 0.902 0.837 0.848 0.85

Accuracy 0.841 0.844 0.846 0.825 0.826 0.829 0.844 0.846 0.849 0.844 0.847 0.848 0.841 0.849 0.847 0.817 0.826 0.824
Recall 0.597 0.604 0.615 0.564 0.582 0.578 0.606 0.613 0.626 0.595 0.606 0.611 0.581 0.611 0.604 0.566 0.584 0.589
F1 0.643 0.649 0.658 0.607 0.616 0.619 0.651 0.656 0.666 0.646 0.654 0.66 0.637 0.659 0.655 0.597 0.616 0.617

Doors
AUC 0.707 0.691 0.736 0.713 0.707 0.753 0.706 0.697 0.739 0.722 0.715 0.749 0.635 0.629 0.637 0.557 0.574 0.574

Accuracy 0.643 0.629 0.679 0.655 0.645 0.686 0.647 0.637 0.681 0.663 0.657 0.684 0.6 0.592 0.597 0.546 0.551 0.551
Recall 0.614 0.608 0.642 0.594 0.585 0.608 0.595 0.577 0.619 0.569 0.56 0.592 0.652 0.674 0.648 0.545 0.526 0.526
F1 0.632 0.62 0.667 0.632 0.622 0.659 0.627 0.613 0.66 0.627 0.619 0.652 0.62 0.623 0.617 0.545 0.539 0.539
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